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1 Applications of Baire’s Theorem III: The Uniform Bound-
edness Principle

1.1 Equicontinuity

Definition 1.1. A subset M of a locally convex space V is bounded if every continuous
seminorm p is bounded on M : supx∈M p(x) ≤ C <∞.

When V1, V2 are locally convex, we let L(V1, V2) be the space of all linear continuous
maps V1 → V2.

Definition 1.2. We say that Φ ⊆ L(V1, V2) is equicontinuous if for every neighborhood
U2 of 0 in V2, there is a neighborhood U1 of 0 in V1 such that x ∈ U1 =⇒ Tx ∈ U2 for
every T ∈ Φ.

If pj is a continuous seminorm on Vj (j = 1, 2) that Uj = {x ∈ Vj : pj(x) < 1}, then
the equicontinuity of Φ means that p1(x) < 1 =⇒ p2(Tx) < 1 for all T ∈ Φ. This implies
that p2(Tx) ≤ p1(x) for all x ∈ V1 and T ∈ Φ. We get that Φ ⊆ L(V1, V2) is equicontinuous
if and only if there exist a continuous seminorm p1, p2 on V1, V2 such that

p2(Tx) ≤ p1(x)

for all x ∈ V1 and T ∈ Φ.

Remark 1.1. If V1, V2 are normed spaces, then Φ ⊆ L(V1, V2) is equicontinuous means
that there exists C > 0 such that ‖Tx‖V1 ≤ C‖x‖V1 for all x ∈ V1 and T ∈ Φ. That is,
‖T‖L(V1,V2) ≤ C for every T ∈ Φ.

1.2 Proof of the uniform boundedness principle

Theorem 1.1 (Banach-Steinhaus, uniform boundedness principle). Let F be a Fréchet
space, and let V be a locally convex space. If Φ ⊆ L(F, V ) is such that for each x ∈ F the
set {Tx : T ∈ Φ} ⊆ V is bounded, then Φ is equicontinuous. On the other hand, if Φ is
not equicontinuous, then the set of all x ∈ F such that {Tx : T ∈ Φ} is bounded is a set of
the first category.
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Proof. Let U be an open, convex, balanced neighborhood of 0 in V , and consider the set
A = {x ∈ F : Tx ∈ U ∀T ∈ Φ} =

⋂
T∈Φ T

−1(U). A is an intersection of closed sets, so it
is closed. A is convex as the intersection of convex sets. Also, A is symmetric. Distinguish
between two different cases:

1. A has an interior point for any choice of U : Then there exists x0 ∈ F and a convex,
symmetric neighborhood of 0 in F (call it V ) such that {x0} + V ⊆ A. Since V is
balanced, {−x0}+ V ⊆ A, and the convexity of V gives

V =
1

2
({x0}+ V ) +

1

2
({−x0}+ V ) ⊆ A.

We get that V ⊆
⋂
T∈Φ T

−1(U), so T (V ) ⊆ U for all T ∈ Φ. So Φ is equicontinuous.

2. There exists a neighborhood U such that A =
⋂
T∈Φ T

−1(U) has empty interior.
Then

⋃∞
n=1 nA ⊆ F is of the first category, and we claim that it contains the set

{x ∈ F : {Tx : T ∈ Φ} is bounded}. Take a continuous seminorm p on V such that
{y : p(y) < 1} ⊆ U . Then, since p(Tx) ≤ C for all T ∈ Φ, there exists some n ∈ N
such that p(Tx/n) < 1 for all T ∈ Φ. So T (x/n) ∈ U for all T ∈ Φ, and so x/n ∈ A,
which makes x ∈ nA.

To summarize, if {Tx : T ∈ Φ} is bounded for all x ∈ F , then we are necessarily in
case 1 by the open mapping (aka Baire’s) theorem. If Φ is not equicontinuous, we are in
case 2, and the set {x ∈ F : {Tx : T ∈ Φ} is bounded} is of the first category in F .

1.3 Applications of the uniform boundedness principle

Corollary 1.1. Let F be a Fréchet space, and let V be locally convex and metrizable.1

Let Tj ∈ L(F, V ) be such that for all x ∈ F , the sequence (Tjx) converges in V . Let
Tx = limj→∞ Tjx. Then T ∈ L(F, V ).

Proof. Linearity is preserved under limits, so T is linear. For any continuous seminorm p
on V and for all x ∈ F , p(Tjx) ≤ C(x) for all j. By the Banach-Steinhaus theorem, (Tj) is
equicontinuous. That is, for every continuous seminorm p2 on V , there exists a continuous
seminorm p1 on F such that p2(Tjx) ≤ p1(x) for all x ∈ F and for all j. If we let j →∞,
we get p2(Tx) ≤ p1(x), so T ∈ L(F, V ).

Let f ∈ C(R) be 2π-periodic. Associated to f is its Fourier series
∑∞
−∞ cn(f)einx,

where

cn(f) =
1

2π

∫ π

−π
f(x)e−inx dx

are the Fourier coefficients. Let SN (f, x) =
∑N
−N cn(f)einx. Next time, we will show

that for all 2π-periodic f ∈ C(R) outside of a set of the first category, (SN (f, x))∞N=1 is
unbounded for all x ∈ Q.

1The metrizability of V is not actually necessary in this result.
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